Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896346

RESUMO

This study examines the impact of injection parameters on the weld line strength of the polyamide 6 and 30% fiberglass (PA6 + 30% FG) composite samples. The effects of filling time, packing time, packing pressure, melt temperature, and mold temperature on the ultimate tensile strength (UTS) and the elongation value of the weld line are investigated. The results reveal that the filling time factor has the lowest influence rate. On the contrary, the packing pressure has the most considerable value of UTS standard deviation, indicating that this factor has a high impact rate. The melt temperature factor has the highest elongation standard deviation, pointing out the strong impact of melt temperature on the elongation value. In reverse, the filling time factor has the lowest elongation standard deviation, showing the low impact of this factor on the elongation value. Increasing the mold temperature enhances the elongation value greatly because a higher temperature generates a better connection in the weld line area. Although the UTS value improves modestly when the mold temperature control system is used, the elongation result from the mold temperature parameter is better than expected. The UTS result from all parameters presents a minor deviation; therefore, it is lower than expected. The optimal strength result from artificial neural networks with genetic algorithm optimization is 85.1 MPa, which is higher than the best experiment result of 76.8 MPa. Scanning electron microscopy (SEM) results show that the interface between the fiberglass and the PA matrix has high adherence. The fracture surface is smooth, indicating that the PA6 + 30% FG composite sample has a high fragility level. The findings could help to increase the injection sample's weld line strength by optimizing the injection molding conditions.

2.
Micromachines (Basel) ; 14(4)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421060

RESUMO

The wire Arc Additive Manufacturing (WAAM) technique has evolved into a cutting-edge 3D printing technique. This study surveys the influences of trajectory on the characteristics of low-carbon steel samples generated by the WAAM technique. The results show that the grains in the WAAM samples are isotropic, with grain size numbers ranging from 7 to 12. Strategy 3, with a spiral trajectory, has the smallest grain size, while strategy 2, with a lean zigzag trajectory, has the largest. The variations in grain size are caused by differences in heat input and output during the printing process. The WAAM samples achieve a significantly higher UTS value than the original wire, demonstrating the WAAM technique's benefit. Strategy 3, with a spiral trajectory, achieves the highest UTS value, 616.5 MPa, 24% higher than the original wire. The UTS values of strategy 1 (horizontal zigzag trajectory) and strategy 4 (curve zigzag trajectory) are comparable. WAAM samples have significantly higher elongation values than the original wire, with only 22% elongation. The sample with the highest elongation value, 47.2%, was produced by strategy 3. Strategy 2 has an elongation value of 37.9%. The value of elongation is proportional to the value of UTS. WAAM samples have average elastic modulus values of 95.8 GPa, 173.3 GPa, 92.2 GPa, and 83.9 GPa, corresponding to strategies 1, 2, 3, and 4. Only a strategy 2 sample has a similar elastic modulus value to the original wire. All samples have dimples on the fracture surface, indicating that the WAAM samples are ductile. These fracture surfaces' equiaxial shape corresponds to the original microstructure's equiaxial shape. The results provide the optimal trajectory for the WAAM products is the spiral trajectory, while the lean zigzag trajectory gains only modest characteristics.

3.
Polymers (Basel) ; 15(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242896

RESUMO

This study aims to explore the effects of Thermoplastic Polyurethane (TPU) content on the weld line properties of Polypropylene (PP) and Acrylonitrile Butadiene Styrene (ABS) blends. In PP/TPU blends, increasing the TPU content results in a significant decrease in the PP/TPU composite's ultimate tensile strength (UTS) and elongation values. Blends with 10 wt%, 15 wt%, and 20 wt% TPU and pure PP outperform blends with 10 wt%, 15 wt%, and 20 wt% TPU and recycled PP in terms of UTS value. The blend with 10 wt% TPU and pure PP achieves the highest UTS value of 21.85 MPa. However, the blend's elongation decreases due to the poor bonding in the weld line area. According to Taguchi's analysis, the TPU factor has a more significant overall influence on the mechanical properties of PP/TPU blends than the recycled PP factor. Scanning electron microscope (SEM) results show that the TPU area has a dimple shape on the fracture surface due to its significantly higher elongation value. The 15 wt% TPU sample achieves the highest UTS value of 35.7 MPa in ABS/TPU blends, which is considerably higher than other cases, indicating good compatibility between ABS and TPU. The sample containing 20 wt% TPU has the lowest UTS value of 21.2 MPa. Furthermore, the elongation-changing pattern corresponds to the UTS value. Interestingly, SEM results present that the fracture surface of this blend is flatter than the PP/TPU blend due to a higher compatibility rate. The 30 wt% TPU sample has a higher rate of dimple area than the 10 wt% TPU sample. Moreover, ABS/TPU blends gain a higher UTS value than PP/TPU blends. Increasing the TPU ratio mainly reduces the elastic modulus of both ABS/TPU blends and PP/TPU blends. This study reveals the advantages and disadvantages of mixing TPU with PP or ABS to ensure that it meets the requirements of the intended applications.

4.
Micromachines (Basel) ; 13(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363911

RESUMO

The fatigue performance of polypropylene (PP) at various amplitudes and frequencies on fatigue cycles under tensile test conditions is investigated in this study. The results show that increasing the frequency leads to a decrease in fatigue cycles due to increased cycle time. The decline rate can be divided into two stages, between 1 and 5 Hz. The first stage rapidly decreases fatigue performance as the frequency increases from 1 Hz to 2 Hz or 3 Hz. The second stage has a lower reduction rate, which occurs between 2 Hz or 3 Hz and 5 Hz due to the strengthening effect of increasing frequency. Furthermore, increasing the amplitude from 0.1 mm to 0.4 mm reduces the fatigue cycle due to the higher deformation rate. In summary, expanding both amplitude and frequency reduces the fatigue performance of the PP material. Moreover, according to the scanning electron microscope microstructure, increasing the frequency results in more microcracks in the polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...